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ABSTRACT 
The effect of magnetic field on the electrically conducting flow of a Jeffrey fluid between two infinite strips, 

where one of the porous strip has a porous bounding surface backed by a solid wall is investigated, the flow in 

the porous medium is assumed to be described by a modified Darcy law. Expressions for velocity field, load 

capacity and thickness-time are obtained. It is observed that the magnetic field increases the load capacity and 

response times of squeeze film. 
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Nomenclature 

0
B  impressed uniform magnetic field 

E  electric field vector ( , , )
x y z

E E E  

H  thickness of porous material 

h  thickness of squeeze film 

0
h  film thickness at 0t   

n
I  integrals defined in (39) 

J  current density vector ( , , )
x y z

J J J  

K  permeability of porous material 

l  length of tile strips in z -direction 

L  load capacity 

0
m  

constant defined in (6),
1
2

0

2( )
m f m

B     

M  
Hartmann number,

1
22 2

0
( )m h  

P  pressure distribution in porous material 

p  pressure distribution in squeeze film 

q velocity vector ( , )u v  

t  time 

U  stream wise velocity component in porous material 

u  stream wise velocity component in the squeeze film 

u  mean velocity in x -direction 

s
u  slip velocity 

V  transverse velocity component in porous material 
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v  transverse velocity component in squeeze film 

h
v  value of v at y h  

  constant related to slip coefficient defined in (11) 

n
  eigen values 

f
  viscosity 

m
  magnetic permeability 

  density 

m
  magnetic diffusivity, 1

m e
   

  
dimensionless parameter, 

1
2h K  

e
  Electrical conductivity 

1
  Jeffrey parameter 

 

 

I. INTRODUCTION 
In the study of fluid transport in biological organisms, we deal with the flow between permeable walls that may 

expand or contract. This phenomenon really has a great importance in medical and biological sciences. Oozing 

through porous walls is an important phenomenon in blood flow, which contribute a lot in inter-body 

transportation of different substances and it may affect the entire health of the living organism. The flows of 

such type have also a wide range of industrial applications. Gold miners, use the machinery in which sludge is 

carried away from the mine to cleansing chambers with the help of vessels which may expand/contract and have 

the porous walls. The flow through dilating and squeezing permeable gaps has been a research area of many 

researchers [1, 2, 3, 4]. Many analytical and numerical techniques have been used to determine the flow profile 

to simulate bio-fluid flow. 

 

In real life, fluids inside living organisms are not Newtonian normally. Si et. al [5] studied the flow of a 

viscoelastic fluid through a porous channel with expanding and contracting walls. It is worth mentioning that 

there is no single model available that can incorporate all the properties of every non-Newtonian fluid. Different 

models have been proposed for different kinds of non-Newtonian fluids [6–8, 9, 10–12, 13, 14]. To understand 

the transportation of materials inside the body further, we need to examine the flows of non-Newtonian fluids. 

This is for, here, we present this work. It takes a non-Newtonian fluid model (Jeffery Fluid model) in to 

consideration. A number of research works have been carried out using the said model [15, 16, 17, 18, 19] 

dealing with the different kinds of geometries and situations. 

 

Many researchers investigate the action of squeeze films between plane and cylindrical surfaces see for example 

[20-23]. These studies are devoted to understand the performance of squeeze film bearings which find 

application in lubrication technology. A squeeze film is a layer of fluid situated between surfaces that are 

approaching each other. This approaching action of the surfaces forces the fluid in the layer to move towards the 

less constrained surroundings. If the film or the fluid layer is very thin then the viscous forces become dominant 

and offer a high resistance to such fluid motion inhibiting the approach of the bounding surfaces. All the 

previous studies concerning squeeze films relate to impermeable bounding surfaces. Wu [24] and Sparrow et al 

[25] have considered the situation where one of the bounding surfaces is permeable. In such a situation only part 

of the fluid will be squeezed out and the remaining part will flow through the porous medium modifying the 

flow pattern. In this type of coupled flow the fluid motion in the squeeze film, is governed by viscous and 

pressure forces and by Darcy's Law in the porous regime. The study of Sparrow et al takes account also of the 

fact that at the porous boundary the no-slip condition is no-longer truly valid. The above fact was demonstrated 

by the experimental study of Beavers and Joseph [26] and Beavers et al [27]. Beavers and Joseph [26] have also 

derived a suitable slip condition for the flow. This slip condition has been slightly modified by Sparrow et al 

[26] in their analysis. 

 

The present investigation is confined to study the interaction of a magnetic flow of a Jeffrey fluid with the 

coupled flows in a squeeze film and in its porous bounding surface. Expressions for load capacity and thickness-
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time relationship for the squeeze film are obtained. These expressions are numerically evaluated and the results 

are presented in graphs to indicate the influence of the magnetic field and the slip velocity on the flow. 

 

II. FORMULATION OF THE PROBLEM 
The physical model considered is shown in fig. 1. The model consists of Jeffrey fluid passing between two flat 

plates of the same dimensions separated by a gap, which is filled with a conducting, incompressible fluid of 

constant properties and of instantaneous height h . The fluid in the gap comprises the squeeze film. The lower 

plate is impermeable while the upper plate consists in part of a porous material of constant thickness H . A 

uniform magnetic field 
0

B is applied in the transverse direction. Since the analysis is directed to study the 

combined effect of slip velocity, porous medium and magnetic field on load capacity of the squeeze film it is 

necessary to study the fluid motion separately in the film and in the porous medium. Then the pressure which 

determines the load capacity is obtained using the pressure continuity condition at the porous plate-film 

interface. Hence we begin the analysis with the study of fluid motion in the film. 

 

 
Fig.1. Physical model 

 

Flow in the squeeze film 

The equations of motion which describe the fluid motion in the squeeze film are the usual Navier-Stokes 

equations together with electro-magnetic equations. For quasi-static, laminar, incompressible flow in the film 

the equations of motion are : 

  2

1
1

f
q q p q J B





      


       (1) 

0q              (2) 

 J E q B             (3) 

0B             (4) 

0E             (5) 

 

The above equations under the approximations of lubrication theory and the assumption that the induced 

magnetic field is negligible compared to applied magnetic field
0

B , (i.e. the magnetic Reynolds number 

1)
m

R reduce to: 

2

2 1

0 02

1
z

f

d u p
m u E H m

dy x






  
   

 
       (6) 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Reddappa * et al., 6(12): December, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [535] 

for the momentum equation in the x -direction. 

Equation (6) can be written in the form 
2 2

02 2

d u M
u a

dy h
            (7) 

 

where 
2 2 2

0
M m h            (8) 

u is the stream wise velocity component in the squeeze film, and 

 
1

0 0

1
z

f

p
a E H m

x






  
  

 
        (9) 

 

z
E which appears in (6) turns out to be constant from (5). In the squeeze film the transverse pressure changes 

are negligible and hence the pressure p is a function of x  only in the film. 

 

Eq. (7) is solved using the boundary conditions: 

0, 0u at y            (10) 

,
u

u at y h
y K


  


         (11) 

 

The condition (11) is the Beavers and Joseph slip condition,   is the slip parameter and K is the permeability 

of the porous medium expressed in units of length squared. 

The solution of (7) satisfying (10) and (11) is 

 
 

2

0 2 2

cosh 1
sinh cosh 1

sinh
cosh sinh

My

M M M My h
u a h

M M M M h M





  
               

     
  

           (12) 

where h
k

  is a dimensionless number. 

We note that in the limit 0M  , equation (12) using (9) with
0

0B  , reduces to the Hydrodynamic case, 

namely 

 

 2 2

1

2

1

2 1
f

h p y y y h
u

x h h



 

      
        

      
     (13) 

The mean velocity u  in any cross-section x  constant, follows as: 

   
 

0

2

2

0 3

1

sinh 1 cosh 2 cosh 1

cosh sinh

h

u u dy
h

M M M M M
a h

M M M M

 





    
  

 


   (14) 

 

In the limit 0M  , (14) becomes: 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Reddappa * et al., 6(12): December, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [536] 

 2

1
1 3

1
12 1

f

h p
u

x



 

     
         

       (15) 

 

The slip velocity 
s

u is obtained by evaluating (12) at y h . Then the ratio of slip velocity 
s

u  to the mean 

velocityu  is written as: 

 
   

2

2

1 cosh

sinh 1 cosh 2 cosh 1

s
M Mu

u M M M M M 




   
    (16) 

 

Eq. (16) in the limit 0M   simplifies to: 

6

4

s
u

u 



           (17) 

 

The transverse velocity of the fluid at the upper bounding wall y h , is obtained using the equation of 

continuity: 

0
u v

x y

 
 

 
           (18) 

 

The transverse velocity v at y h  can be written as  

 
 

3 2

1

2

1
h

f

h p
v Q

x





   
  

 
        (19) 

 

where  
   

 

2

3

sinh 1 cosh 2 cosh 1

cosh sinh

M M M M M
Q

M M M M

 



   



 

 

The pressure ( )p p x appearing in the above equation is still an unknown. To determine ( )p x it is 

necessary to have the knowledge of flow conditions in the porous medium and hence we now study the flow in 

the porous medium. 

 

Flow in the porous medium 

In the porous regime, the velocity components are related to pressure by Darcy's law, which in the presence of a 

magnetic field can be written in the form: 

 1

0

1
z

f

K P
U J B

x





  
   

 
        (20) 

 1
1

f

K P
V h

x





  
    

 
         (21) 

 

where h  refers to the velocity with which the porous medium itself is moving. Capital letters are used in (20) 

and (21) to denote velocity components and pressure in the porous medium.  

Eq. (20) after simplification reduces to: 
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0
a

U
m

             (22) 

where 
1

0 0

1
z

f

P
a E H m

x






  
  

 
 and   

2

0
1m m K   

 

U andV satisfy the continuity equation in the porous medium and employing the continuity equation: 

0
U V

x y

 
 

 
          (23) 

 

Eqs. (21) and (22) can be transformed to the form 
2 2

2

02 2
0

P P
C

x y

 
 

 
          (24) 

Where 

2

2

0 2
1

M
C


   

Eq. (24) is a Laplace equation in two dimensions. Using the method of separation of variables, we arrive at the 

solution of ( , )P x y in the form: 

 0 0

1

( , ) cos sinn ny y

n n n n n n

n

P x y A e B e C C x D C x
   






         (25) 

The integration constants and eigen values are determined using the boundary conditions on P . 

 

The boundary conditions on P  are: 

0
P

at y h H
y


  


         (26) 

0 0 andP at x x l           (27) 

 

The above boundary conditions are obtained as follows: 

 

If the porous medium is backed by a solid wall then V h  at the porous-solid interface and hence from (21) 

the first boundary condition follows. If the boundaries at 0x   and 1x  are exposed to the atmosphere at 

uniform pressure, the reference pressure P is taken as zero. Using the above boundary conditions we obtain the 

expression for the pressure ( , )P x y in the form: 

 

 2

0

1

( , ) 1 sinnn h H yy

n n

n

P x y E e e C x
 


 



          (28) 

To determine 
n

E the pressure continuity condition 

( ) ( , )p x P x h      

      (29) 

at the interface of film and porous medium is employed. With the aid of (24), (29) can be expressed as: 

2 2

2

02 2

,x h

P P
C

x y

  
  

  
         (30) 
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Using the continuity of transverse velocity: 

 ,
h

v V x h            (31) 

 

Eq. (21) is finally transformed to: 

   2 3 2

1 0 1

2

, ,

1 1
[ ]

f fx y x h

C h KP P
Q h

y y

 

 

     
    

    
     (32) 

Eq. (32) with the help of (28) can be written as: 

 

2 2
0

3 2
11 0

3

0 0

2
1 exp

exp sin
1 1 2

1 exp

f

n

n

n H
Q

C lh n n n x
E

h l C l lKl n H

h C n C l



   

 







    
    

      
                     

  (33) 

The constant 
n

E  appearing in (33) is determined by using the orthognality of the eigen functions 

sin
n x

l

 
 
 

. 

Thus:

   
 

  

 
  

1

2

32 1 3 3

1 3

0

1 exp
4

exp 1
1 exp2 1 1

2 1

f

n

S Q
hl

E R Kl
Sn h

h C n



 






  
 

    
      

 (34) 

where  
 

0

2 1n
R

C l


 ,     

 

0

4 2n H
S

C l


  

n
E  vanishes for n  =even. 

 

Then the pressure distribution ( )p x in the squeeze film using (29) takes the form 

 

 

 

 

3

1

32 3
0

1

3

0

1 2 14
( ) sin

2 1

1 exp( ) 1

2 1 exp( ) 1

nf

h n x
p x

ll h n

Kl S
Q

h C n S

 

 









  
  

  

   
     

     


    (35) 

Similarly the pressure in the porous medium ( , )P x y is completely determined using (34). Once the pressure 

fields in the film and the porous medium are known, the respective velocity components are determined 

completely using (12), (19), (21) and (22). 

 

Load capacity and thickness-time relation 

The load capacity per unit length in the z -direction is found by integrating (35): 

load capacity 

0

( )
l

L p x dx           (36) 
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The non-dimensional load capacity follows as: 
1

3

1

4 4 33
0 0

(1 ) 8 1 exp( ) 1

(2 1) (2 1) exp( ) 1nf

h L Kl S
Q

n h n C Shl



 






     
     

      
   (37) 

 

In the limit 0M  , the above expression emerges as: 

 
 

3

1

4 43
0

1

3

(1 ) 96

(2 1)

exp (4 2) 13 1
1 12

1 (2 1) exp (4 2) 1

nf

h L

nhl

n H lKl

h n n H l







  








 



    
     

       



 (38) 

 

An expression for thickness-time relation can be obtained for a constant load by integrating (37). 

 

The non-dimensional thickness-time t  is written in the form 
2

1 0

3
00

(1 )
n n

nf

h Lt hF I
hl









    
 

              

(39) 

where 
4 4

8
and

(2 1)
n

F
n 





 

   

 

0

1

3 20 0

3 0

0

1

3

0

2
sinh 1 cosh cosh 1

cosh sinh( )

1 exp( ) 1

2 1 exp( ) 1

h h

n

h h
M M M M M

K K

h
M M M MI h h d

K

Kl S

h n C S

   


 






   
      

   
  

   
  

   
    

     



            

 (40) 

0
h is the thickness of the film at time 0t   and h  is the thickness of the film at time t . 

 

III. RESULTS AND DISCUSSION: 

In this study, 
3

0 0

0.05, 0.01 and 0.5
K H K

h L h
   are used for numerical computation. 

The dimensionless group 

2

0

3

f

Lh
t

l
 is plotted as a function of the ratio of the instantaneous thickness h  to the 

thickness 0h  at time 0t   for different values of Hartmann number M  with 

0

0.5
K

h
  and 

0

0.1
K

h
  which 

are presented in figures 2 and 3 respectively. It is noticed that, for a given value of porous medium group 
3

0

 k l

h
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and slip group
K

h
, the thickness time increases with increasing magnetic field. The dimensionless group 

2

0

3

f

Lh
t

l
 as a function of the ratio of the instantaneous thickness h  to the thickness 0h  at time 0t   for different 

values of Jeffrey parameter 1  with 

0

0.5
K

h
  is plotted in figure 4. It is observed that with increasing Jeffrey 

parameter 1 the thickness time increases.  

 

 

Fig.2. Thickness - time relation for different values of M  with

0

0.5
K

h


 

 

 

Fig.3. Thickness - time relation for different values of M  with

0

0.1
K

h

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       Fig.4. Thickness - time relation for different values of 1  with

0

0.5
K

h
  
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